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An analytical solution is developed to describe the steady, closed streamline 
velocity field within a cylindrical cavity with a uniformly translating wall a t  
low Reynolds numbers. The solution has application for the case of two-phase 
flow in a tube where regions of fluid are segmented by a moving train of bubbles 
or plugs, such as in the pulmonary and peripheral capillaries of the body where 
segments of plasma are trapped between red blood cells. The mathematical 
approach presented in this study can in principle be useful in the analysis of a 
wide class of closed-streamline creeping-flow problems. 

Introduction 
Fluid motions with closed streamlines involve complex two- or three- 

dimensional recirculating flow patterns and constitute an important class of flow 
fields. Perhaps the most extensively studied case in this class is the fluid motion 
generated in a rectangular cavity either by the translation of one of the walls 
(Burggraf 1966) or by the flow of a fluid over an open end of the cavity (Weiss & 
Florsheim 1965). The behaviour of a fluid in a cavity or notch and its influence on 
heat or mass transport through the cavity are important in the modelling of 
certain types of heat and mass transfer equipment. In  addition, the analysis of 
cavity flow is relevant in bearing and seal studies and in certain aerodynamic 
applications. A closely related problem is that of circulation induced in an en- 
closed basin by surface stress due to the wind blowing along the top of the basin 
(Bye 1966). 

Although the rectangular cavity has been perhaps the most widely examined 
closed-streamline flow field, there are other practically important and theoreti- 
cally interesting flow fields with closed streamlines. For example, the movement 
of fluid droplets through another fluid gives rise to circulation currents within the 
droplets, and the analysis of this closed-streamline flow field and its influence on 
maw, transfer is of considerable practical importance (Johns & Beckmann 1966; 
Kronig & Brink 1950). In  addition, natural convection in cavities or other en- 
closed spaces is an example of a closed-streamline flow field caused by an unstable 
distribution of body forces due to temperature or concentration gradients (Gill 
1966; Wilkes & Churchill 1966). Closed-streamline flows can also occur in un- 
confined regions such as the recirculating eddies formed in the flow over solid 
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bodies. In  a certain Reynolds number range, these eddies become relatively 
steady, recirculating flows which are separated from the main flow field (Burggraf 
1966). Finally, an interesting example of a closed streamline flow associated with 
hydrodynamic instability is the toroidal or Taylor vortex flow which can be 
generated in the annulus between rotating cylinders (Taylor 1923). 

An important closed-streamline velocity field which has attracted considerable 
interest is the circulating flow that results when a train of bubbles or plugs passes 
through a tube. If the diameter of the plugs is effectively equal to the inside 
diameter of the tube, then the fluid is confined and circulates between two suc- 
cessive plugs. A co-ordinate frame fixed in space and one moving at  the speed of 
the plugs are related by a Galilean transformation so that the flow field between 
two plugs is simply related to the fluid motion produced by the steady movement 
of the wall surrounding a stationary cylindrical cavity filled with fluid. A 
schematic representation of such a cylindrical cavity and the associated surfaces 
of constant stream function is presented in figure 1,  plate 1.  The movement of 
plugs through a pipe has been termed bolus flow (Prothero & Burton 196l),  and 
the principal features of this flow can be deduced by examining a single stationary 
cylindrical cavity with a uniformly translating wall. In particular, it is of interest 
to deduce the fluid-mechanical features of such a flow as well as to determine the 
influence of the flow field on heat and mass transfer processes in the cavity. 

Several recent experimental studies have been concerned with flows which 
closely resemble the flow in a cylindrical cavity with solid walls. Differences result 
either because the plugs or bubbles do not completely fdl the pipe or because the 
boundary conditions are slightly changed as is the case when gas bubbles are 
used instead of solidplugs. Oliver and co-workers (l964,1968a, b )  experimentally 
investigated the pressure drop and heat transfer characteristics of the slug flow 
regime of two-phase pipe flow with segments of liquid moving down the pipe 
between slugs of gas. These studies indicate that the induced circulation can 
increase the heat transfer coefficient by more than a factor of two over that 
realized in single-phase, laminar pipe flow. The fluid-mechanical aspects of bolus 
flow can also be of some importance in the design of the pipeline transport of 
solids in the form of capsules (Figueiredo & Charles 1968). Recently, Johansson, 
Olgard & Jernqvist (1970) have demonstrated that the unique characteristics 
of this flow field coupled with the radial migration of particles can be exploited 
to separate and fractionate particles in a suspension. Perhaps the most significant 
occurrence of bolus flow is in the pulmonary and peripheral capillaries of the body 
where segments of plasma are trapped between red blood cells which must deform 
in order to enter the capillary. It has been suggested that the circulation induced 
by the plugs of red cells increases the rate of gaseous equilibration within the 
plasma. In  a recent survey by Wingard (1969) the problem of mass transfer in 
capillaries through which deformable sweeper particles pass is listed as one of the 
important fundamental technical problems in bioengineering. 

Prothero & Burton (1961, 1962) have investigated the significance of this 
induced circulation in relation to oxygen transfer in pulmonary capillaries by 
conducting thermal analogue experiments. Their experiments, which involved 
heat transfer to a fluid flowing in a tube while segmented by gas bubbles, 
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qualitatively confirm the results of Oliver and co-workers (1964, 1968a, b ) ,  and 
in some cases bolus flow was observed to be about twice as effective in transferring 
heat as Poiseuille flow. Visual observations and photographs of dye traces by 
Prothero & Burton revealed closed flow circuits similar to those depicted in 
figure 1. 

To our knowledge, there exist no analytical or even finite-difference solutions 
of the equations describing both momentum and heat or mass transfer in bolus 
flow. Consequently, in this paper, an analytical solution is developed to describe 
the steady, closed-streamline velocity field within a cylindrical cavity with a 
uniformly translating wall at  low Reynolds numbers where the inertial terms in 
the equations of motion can be safely neglected. In a second paper, this calculated 
velocity field is introduced into the energy equation, and an analytical solution 
is obtained describing the nature of the heat transfer enhancement due to the 
circulating bolus flow field. There are two basic objectives of the present in- 
vestigation. First of all, there is the elucidation of the principal characteristics 
of heat and momentum transport in a relatively important flow situation. 
Secondly, there is the presentation of techniques and the accompanying mathe- 
matical paraphernalia which, in principle, can be of use in obtaining solutions 
to the equations which describe many other closed-streamline flow fields. 

The results and techniques presented in this study are specific for low Reynolds 
number flows, but, in reality, this restriction is not too severe. This regime is of 
particular importance in the case of plasma flow in small capillaries. In  addition, 
the experimental studies and approximate solution of Weiss & Florsheim (1965) 
and the finite-difference solutions of Burggraf ( 1966) for square cavities suggest 
that the zero Reynolds number solution describes the basic features of the flow 
quite well for Reynolds numbers as high as 150. Finally, interesting features of 
closed-streamline flows, such as corner eddies, can be more easily examined by 
utilizing analytical rather than finite-difference or approximate solutions. 

Four recent theoretical papers serve to complement the results of the present 
work. Lighthill (1968) investigated the flow of tightly fitting solid pellets along 
elastic tubes, providing an analysis of the hydrodynamics in the lubricating 
film between the pellets and the tube wall. Wang & Skalak (1969) analyzed the 
creeping flow of fluid through a cylindrical tube containing rigid, spherical par- 
ticles for sphere diameter-tube diameter ratios as high as 0.9. Bugliarello & 
Hsiao (1967) and Lew & Fung (1969) have previously considered the fluid- 
mechanical problem investigated in this paper. The first pair of authors utilized 
a finite-difference approach to generate a solution to the equations of motion 
whereas Lew & Fung obtained an analytical solution. Both the method and form 
of the solution of Lew & Fung (which was published after the present study was 
essentially complete) are substantially different from those of this investigation. 
In  addition, a different method was used to obtain the first members of the infinite 
set of coefficients of the eigenfunction expansion. Lew & Fung utilized a colloca- 
tion method whereas, in this study, the series coefficients were basically cal- 
culated by the usual approach, which requires that the difference between a 
function and its series representation be minimized in a least-squares sense over 
a finite interval. Finally, quite curiously, Lew & Fung reported results only for 
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the case where the radii of the disks which separate segments of fluid were only 
0.9 of the tube radius. The axial velocity in the gap between a disk and the tube 
wall was left unspecified and the mean vclocity of the fluid between two disks 
was, consequently, less than the velocity of the disks. 

The present study is regarded as a significant advancement over the previous 
work for the following reasons. First of all, in general, analytical solutions are to 
be preferred over finite-difference solutions because they better elucidate the 
structure of the solution to a problem, because they are flexible enough to permit 
easy evaluation of the effect of the parameters of the problem on the solution, 
and because they are better suited for the detailed examination of specific 
regions of a flow field (for example, a vortex centre or a corner eddy). The finite- 
difference results of Bugliarello & Hsiao are not utilized since an analytical 
expression for the stream function is needed if an analytical solution to the heat 
transfer problem is to be obtained. Furthermore, the collocation method for 
determining the coefficients of the series representing a function over an interval 
is generally regarded and often shown to be the least sophisticated of the enor 
distribution methods; in addition, it is also frequently sensitive to the choice of 
collocation points. These shortcomings are of importance in the present instance 
since the forms of the eigenfunctions both for this work and for that of Lew & 
Fung are such that satisfying one of the boundary conditions near the point 
where the tube wall and the solid plug meet is a matter of some delicacy. Con- 
ceivably, the inadequacy of the collocation method is one reason why Lew & 
Fung chose not to extend the solid plug to meet the tube wall. On the other hand, 
determination of the eigenfunction coefficients by minimization of the Hilbert 
norm yields, with a reasonable number of coefficients, a very satisfactory repre- 
sentation of a Neumann condition on the tube wall with a minimal effect of the 
Gibbs phenomenon. 

Comparison of the axial velocity profiles from the two aforementioned studies 
shows substantial differences near the tube wall, a region where such differences 
can profoundly influence the rate of heat transfer. It is felt that utilization of the 
analytical solution for the velocity field obtained in this paper in the energy 
equation rather than application of the solution of Lew & Fung is justified since 
the present work describes a limiting physical situation whereas it is not clear 
that the work of Lew & Fung can be easily extended to depict this limit. Two 
other new results of this paper are the careful mathematical analysis of the 
infinite set of equations for the coefficients and the presentation of a solution for 
the case where the plugs separating the liquid segments consist of inviscid fluids 
rather than solids. 

Finally, Lew & Fung express the opinion that the effect of convection on 
oxygen transfer through capillary blood vessels is negligibly small, apparently 
because the streamlines as viewed by an observer fixed with respect to a capillary 
appear to differ only slightly from those for Poiseuille flow. It is shown in the 
second paper that this conclusion is correct but the reasoning is not. Indeed, 
it is the small value of the PBclet number for blood flow in capillaries which leads 
to a disappointingly small mass transfer enhancement. 
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Formulation of problem 
Consider the laminm, steady flow of an incompressible Newtonian fluid with 

constant viscosity in a cylindrical cavity of the type depicted in figure 1. In  the 
absence of gravitational effects it is possible to assume symmetry in the azimuthal 
direction with the velocity component in this direction everywhere equal to zero. 
In the limit of very low Reynolds numbers, the flow field is described by the 
following set of equations written in terms of dimensionless variables: 

avpr + V / r  -I- aupz = 0, (3) 
U(0,s )  = 0, U ( p , r )  = 0, U ( z ,  1) = - 1, (41, ( 5 ) ,  (6) 

(aU/WT=,, = 0, (7 )  

(81, (9) Y(0,  r )  = V ( p ,  r )  = 0, V(z ,  1) = V(z ,  0) = 0, 

where the dimensionless quantities are related to their dimensional counterparts 
in the following manner: 

axial velocity U = U*/Ua; radial velocity V = V*/Ua, (10) 

where U, is the velocity of the cavity wall, velocity of plugs in a pipe; 

where R is the radius of the cavity and L the length, p is the pressure, p the 
density, ,u the viscosity, p the aspect ratio LIR and Re is the Reynolds number 

The above equationa of motion can be modified in the usual way yielding the 

axial distance x = z*/R; radial distance r = r*/R, (11) 

2RUaPIP. 

slow flow form of the vorticity diffusion equation 

for the only non-vanishing component of the vorticity vector 

w = a v p z  - sup. (13) 

(141, (15) 

Introduction of a dimensionless stream function satisfying (3) by the equations 

u = - ( l /  r )  a $ p ,  V = ( l / r )  a$/az, 

and utilization of (12) and (13) yield the expanded form of the fourth-order 
partial differential equation describing the spatial variation of the stream func- 
tion for this flow field: 

E2 being 

Equation (16) is very similar to the cylindrical co-ordinate form of the biharmonic 
equation, and techniques useful in obtaining solutions to the biharmonic equa- 
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tion can often also be applied in determining solutions to the fourth-order stream- 
function equation. Finally, the boundary conditions, (4)-( 9), can be rewritten as 

$- = 0, ( l lr)  a$lar = a2$./ar2 (17)  
9 = 0, a$./ar = 1 for r = 1, 0 < z < p, (18) 
1c1. = 0, a$iaz = o for z = 0, 0 < r < 1, (19) 
9 = 0, a$laz = o for z = p, 0 < r < 1.  (20) 

for r = 0, 0 < x < p, 

Equations (16)-(20) represent a well-posed system of equations describing the 
spatial variation of the stream function. Once the expression for the stream 
function is determined, it is an easy matter to calculate the velocity, vorticity 
and pressure fields from (1 3)-( 15), (1) and (2). 

Solution of fourth-order stream-function equation 
The cylindrical cavity flow problem is such that the normal derivatives of the 

stream function are expressed in terms of series of non-orthogonal functions on 
the boundaries of the cavity. Consequently, although the eigenfunctions of the 
fourth-order partial differential equation form a complete set, the fact that they 
lead to series expansions of functions on the boundaries which are not mutually 
orthogonal poses a basic difficulty in the computation of the coefficients of the 
eigenfunction series. Burggraf (1966), Pan & Acrivos (1967), and Weiss & 
Florsheim (1965) experienced a similar predicament in attempting to obtain 
exact solutions for the creeping-flow equations describing the circulation patterns 
in square and rectangular cavities. Burggraf and Pan & Acrivos resorted to 
finite-difference techniques to obtain solutions, and Weiss & Florsheim utilized 
a variational principle to generate an approximate analytical solution to the 
biharmonic equation. The elasticity literature is perhaps the richest source of 
methods of obtaining solutions to the biharmonic equation, and series expansions 
of non-orthogonal functions in the mathematical theory of elasticity have been 
handled by application of the theory of infinite systems of linear algebraic equa- 
tions. Kantorovich & Krylov (1  958) and Timoshenko & Woinowsky-Krieger 
(1959) give examples of such an approach in solving the biharmonic equation 
describing the spatial variation of the deflexion of thin plates. Another possible 
method of resolving the problem is an orthogonalization procedure (Morse & 
F'oshbach 1953) which involves linearly combining functions from the complete 
set of non-orthogonal functions to form a new set of functions which is also 
complete and, in addition, orthogonal. In  this paper, we deduce the proper form 
of the eigenfunctions and employ the theory of infinite systems of equations as 
outlined by Kantorovich & Krylov to produce an analytical solution of the slow 
flow equation for the cylindrical cavity. 

From the form of the partial differential equation and the nature of the 
boundary conditions and from completeness considerations, it follows that a 
solution of (16) can be written in the following form: 
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where J, is the Bessel function of f i s t  kind of order n .  Substitution of ( 2 1 )  into (16 )  
produces homogeneous, ordinary differential equations for the 8, and the 2, 
whose solutions can be combined to give the following form of the eigenfunction 
expansion for the stream function: 

Gn(z) = B,[ean*-e-a@-- ( z /P) ean(2p-z)+ ( z / P )  e-ano] + Cn[z eanz- z ean(zb-z)], ( 2 5 )  

where I, is the modified Bessel function of first kind of order n. The three infinite 
sets of coefficients, A,, B, and C,, must be chosen so that the Neumann con- 
ditions on the boundary of the cylindrical domain are satisfied. 

Utilization of appropriate Fourier sine and Fourier-Bessel expansions in the 
Neumann boundary conditions yields the following set of equations for the three 
infinite sets of eigenfunction coefficients: 

4amPeamp x An&,, 2(1-e2amB) AnQ,,(-1)" 

7 ( 2 6 )  
n= 1 n = l  B , = -  +- 

g, gm 
m 

(4amPe%b-- 2eawJ+ 2e-arnP) C A,&,, 
c, = n=l  

m 

Definitions of the quantities in these equations are given in the appendix. It is 
clear that the difficult task in completing the analytical solution of the fourth- 
order stream function equation is the determination of the infinite set of A,  from 
( 2 8 ) .  This calculation, which involves solution of a single infinite system of 
linear algebraic equations, is discussed in the next section. 

Explicit expressions for the velocity, pressure, and vorticity distributions can 
be derived from (l), ( 2 ) ,  (13)-(15), and ( 2 3 ) ;  these results are not presented here 
since they are of secondary importance for our purposes. The pressure distribu- 
tion is of course essential in determining the resistance to flow for a bolus flow 
situation such as the circulation of blood in capillaries (Prothero & Burton 1962). 
The vorticity distribution is useful in investigating the structure of viscous eddies 
(Burggraf 1966). Finally, the position of the vortex centre of the circulation 
pattern can be derived from the equations for the velocity components by setting 
U = P = O .  
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Solution of infinite system of equations 
Kantorovich & Krylov (1958) present a detailed discussion of the theory 

germane to the solution of an infinite system of equations for an infinite set of 
unknowns. They establish the necessary existence and uniqueness theorems and 
indicate a method of determining approximate values of the unknowns by means 
of a finite number of operations. The following three theorems, valid for a special 
class of infinite systems denoted as fully regular by these authors, will be useful 
in the present study: 

THEOREM 1. The solution of a fully regular system exists for any bounded set of 
free terms. 

THEOREM 2. A fully regular system with bounded free terms always has a unique 
bounded solution, which may be found by the method of successive approximations 
starting from any bounded system of initial values. 

THEOREM 3. The solution of a fully regutar system with bounded free terms may be 
found by the method of reduction. The method of reduction involves the solution of 
finite systems derived from the infinite system by discarding all equations and un- 
knowns beginning with a certain one. The solutions of such finite systems approach 
the solution of the infinite system as more equations and unknowns are retained. 
An inJinite system of linear equations of the form 

00 

xi = x Cik~,c+bi (i = 1,2,  ...) 
k=l  

i s  called a fully regular system with bounded free terms i f  
m 

x ICikl < K ,  < 1 (i = 1,2,  ...), 
k= 1 

p i 1  G K,, 
where K ,  is a constant and K ,  i s  a constant number less than one. 

It can be shown that, at  least for the range of values used here, (28) is a fully 
regular infinite system with bounded free terms. Therefore, by the above three 
theorems, we are assured of obtaining a unique, bounded solution by solving 
progressively bigger finite systems. In  this manner, we can asymptotically 
approach the solution to the infinite system; in practice, we say that we have 
effectively attained this solution when the solution essentially stops changing 
as the size of the finite system grows. It can be shown that the even-numbered 
eigenfunction coefficients obey the relation 

A, = 0 (n = 2,4 ,  ...), (32) 

so that only the odd-numbered equations must be considered in solving for the 
unknowns A,,& .... Equation (32) is simply a consequence of the obvious 
symmetry of the flow field in the limit of low Reynolds numbers. 

The first twenty eigenfunction coefficients for four values of ,8 are recorded 
in table 1. In  each case, these coefficients were determined by solving a finite 
system of 40 equations by the method of successive approximations. Further 
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increase of the size of the finite system had negligible effect on the first twenty 
coefficients of each set. These twenty coefficients were adequate for accurate 
determination of the stream-function distribution. 

p = 0.5 

117.980 x 
59.384 
37.958 
27.667 
21.668 
17.727 
14-977 
12.937 
11-363 
10.114 
9.100 
8.259 
7.552 
6.949 
6.429 
5.977 
5.580 
5.228 
4.915 
4-635 

p = 1.0 

68.570 x lo-' 
49.973 
34.349 
25.791 
20.528 
16-986 
14.447 
12.540 
11.056 
9.854 
8.890 
8.087 
7.408 
6.828 
6.326 
5.888 
5.503 
5.161 
4.857 
4-583 

/3 = 5.0 p = 20.0 

10.375 x 10-2 
12.362 2.545 
13.623 2.618 
13.486 2.714 
12.559 2.821 
11.440 2.927 
10.455 3-021 
9.514 3.097 
8.690 3.151 
7.972 3.181 
7.347 3.190 
6.802 3.178 
6.322 3.150 
5.899 3.108 
5.523 3.055 
5.188 2.994 
4.887 2.928 
4.616 2.857 
4.371 2.785 
4.148 2-7 11 

2.505 x 10-2 

TABLE 1. Calculated eigenfunction coefficients 

Results and discussion 
Streamline patterns for cylindrical cavities for /3 = 0.5, 1, and 5 are shown in 

figures 2-4. For /3 = 0.5 there exists a two-cell recirculation pattern quite similar 
to the multicellular circulation patterns observed by Pan & Acrivos (1967) and 
Weiss & Florsheim (1965) for tall rectangular cavities. In fact, the second cell 
appears at approximately the same aspect ratio in all three studies. No corner 
eddies of the type discussed by Pan & Acrivos and Burggraf (1966) were detected 
in this study because the boundary conditions at  the centreline of the cylindrical 
cavity are of course quite different than those at  the solid bottom wall of the 
rectangular cavity. 

As /3 becomes large, the streamlines in the centre of the cavity become 
essentially parallel to the cavity wall. Indeed, it follows from (23) and (28) that, 
as ,8 -+ co, the eigenfunction coescients can be expressed as 

(33) 

y9 = +(r4-r2).  (34) 

A, = - [l- ( -  1)"]/4/3 

and the stream function is thus given by 

Equation (34) is the relation for the stream function for laminar flow in a pipe 
expressed in terms of a velocity relative to a co-ordinate system moving with the 
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average velocity of the fluid. It can be seen from figure 4 that, for values of f l  
as low as five, the streamlines are effectively parallel for a good part of the region 
inside the cavity, 

1 .o 

0.9 

0.8 

0.7 

0.6 

r 0.5 

0.4 

0.3 

0.2 

0.1 

" ~~ 

0 0.1 0.2 0.3 0-4 0.5 
2 

FIGURE 2 .  Streamline pattern for p = 0.5 with no slip boundary condition. 

n 1 1 1 1 1 1 1 1 1  
"0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

z 

FIGURE 3. Streamline pattern for p = 1 with no slip boundary condition, 
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fi= - 1.2 x 10-1 

-1.ox 10-1 

- 5 . 0 ~  lo-' 

-1.ox 10-2 

-1.ox lo-3 

r 

I I I 1 

0 0.5 1 .o 1.5 2.0 2.5 

FIGURE 4. Streamline pattern for /3 = 5 with no slip boundary condition. 
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Locations of the vortex centres are presented in table 2 .  All of the cell centres 
are of course at  z = t P  for the creeping-flow r6gime. It follows from (34) that the 
vortex centre for p = 00 must occur at 

r = 442, (35) 

(36) 1/. = -1. with 8 '  

It is clear from table 2 that these limits are effectively realized for values of P 
as low as five. 

First vortex Second vortex 

P r v+ r v+ 
Solid plugs with no slip boundary condition 

1.0 0.794 - 8.6 x lor2 - - 
5.0 0.707 - 12.5 x lo-' - - 

03 0.707 - 12.5 x lo-' - - 

Inviscid gas plugs with no drag boundary condition 
0.5 0.845 - 6.4 x 10-2 - - 
1.0 0.752 - 10.5 x 
co 0.707 - 12.5 x lo-' 

I h , 7- 

0.5 0.888 -4-7 x 10-2 0.212 3.8 x 10-5 

- - 20.0 0.707 - 12.5 x 

- - 
- - 

TABLE 2. Location of vortex centres 

Other aspects of the flow field, such as vorticity and pressure distributions 
and velocity profiles, can be calculated from the above results, but they are not 
presented here because they are not of primary interest in the present work, 
The above results depict quantitatively the nature of the fluid motion in a 
cylindrical cavity for very low Reynolds numbers. In addition, a relatively simple 
approach is presented for obtaining analytical solutions to closed-streamline 
creeping-flow problems. The stream functions calculated in this paper are used 
in a second paper in the analysis of heat transfer to a cylindrical cavity with a 
uniformly translating wall. 

17 F L M  4 j  
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Bolus flow is defined most generally (Prothero & Burton 1961) as the motion 
that results when a fluid element of one phase separates two elements of another 
phase as the train moves down a tube. Above, we have derived the velocity field 
for the special bolus flow motion that is caused by solid plugs flowing between 
elements of an incompressible fluid; in a stationary co-ordinate system, this 
flow field reduces to  the cylindrical cavity problem with solid plane surfaces and 
a uniformly translating curved surface. The decision to concentrate on this 
particular physical situation was dictated primarily by three considerations. 
First of all, this representation appears to be a reasonable first approximation to 
blood flow through small capillaries. Secondly, the cylindrical cavity with solid 
walls is physically similar to the important rectangular cavity, and the basic 
method of solution used here should also be helpful in examining the fluid 
motion in the rectangular geometry. Finally, the no slip boundary condition 
at the surface of a solid plug is one limiting case of the interaction between the 
two phases flowing down the tube. 

The other limiting case is that of an inviscid gas phase separating elements of 
a liquid phase. For this situation the boundary conditions a t  x = 0 and z = P 
are modified in such a manner that the solution is significantly simpler than that 
presented above. If it is assumed that the diameter of the gas bubbles is effectively 
equal to the diameter of the tube and that the gas-liquid interface is not curved, 
it follows that the no drag condition can be written as 

(av/ax),,, = (av/az),,, = 0, (37) 

a2$/az2 = 0 for z = 0, z = p, 0 r < 1. (38) 
or, equivalently, 

With this change in the set of boundary conditions presented earlier, the solution 
to (16) can be expressed in the following form: 

m f .  nnx 9 = &F,(r)sin-) 
n-1 P (39) 

with the eigenfunction coefficients given by 

It is clear that a considerable simplification in the form of the solution results 
by letting the viscous shear stresses vanish on the plugs surrounding the fluid. 
Bhattacharji & Savic (1965) derived an analytical solution, similar in some 
respects to (39), for the case of a gas piston driving a Newtonian fluid through a 
circular pipe. The extent of the fluid ahead of the piston was considered infinite. 
For this semi-infinite region, the eigenfunctions are necessarily in terms of a 
Fourier integral rather than a Fourier series and the eigenvalues form a con- 
tinuous rather than a discrete spectrum. 

Streamline patterns for the case of gas plugs are shown in figures 5 and 6 for 
P = 0.5 and 1 ; the vortex centre locations are given in table 2. These graphs can 
be directly compared with the flow fields for solid plugs shown in figures 2 and 3. 
As would be expected, fluid flow rates are greater near the plane boundaries of 
the cavity when gas plugs are used, and the stream function increases more 
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FIGURE 5. Streamline pattern for p = 0.5 
with no drag boundary condition. 

2 

FIGURE 6. Streamline pattern for p = 1 
with no drag boundary condition. 

rapidly near these boundaries. In  addition, the two-cell circulation pattern 
observed for P = 0-5 for solid plugs is not in evidence for the gas plugs because the 
resistance of the plugs to flow has effectively disappeared. The velocity field in 
a fluid which circulates between plugs with a consistency somewhere between the 
solid and gas plugs can of course be visualized as being intermediate to the cases 
considered here. 
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